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Received 9 October 2007, in final form 23 November 2007
Published 1 April 2008
Online at stacks.iop.org/JPhysCM/20/164203

Abstract
Electron states and local magnetization in quantum point contacts (QPCs) with different
geometries and applied gate voltages are examined for a model GaAs/AlGaAs device. Using
the local spin density approximation (LSDA) we recover ferromagnetic spatially split solutions
in the pinch-off regime as well as antisymmetric solutions that occur with decreasing gate
voltage. These kinds of spin states, which may appear in a repeated fashion in the few-electron
regime, are precursors to an extended ferromagnetic state that may be associated with the 0.7
conductance anomaly. We briefly comment on some recent experiments indicating the presence
of bound states (Yoon et al 2007 Phys. Rev. Lett. 99 136805). We have not found any indication
of such states but suggest that the accumulations of spin and charge at the two ends of a QPC
and associated singlet and triplet states are relevant in this context.

1. Introduction

There is a rich physics and an elegant technology associated
with gated modulation-doped semiconductor heterostructures
like GaAs/AlGaAs. One attraction is the versatile high-
mobility two-dimensional (2D) electron gas that resides at
the semiconductor interface, a gas that may be shaped into
different geometries by means of patterned metallic gates,
for example, and whose density may be monitored by
applied voltages. The structures in focus here are quantum
point contacts (QPCs), which consist of narrow constrictions
connected to surrounding 2D electron reservoirs. An electric
current may be induced through the constriction when a voltage
is applied over the two reservoirs that act as a source and a
drain. As is well known, the conductance in high-mobility
devices like these is quantized in steps of 2e2/h [1, 2],
which is a paradigm in modern mesoscopic physics. The
quantized conductance is readily explained in terms of non-
interacting electrons traversing a parabolic saddle potential, for
example, with sub-band thresholds giving rise to the quantized
conductance steps [3]. The phenomenon is quite robust,
however, and occurs for smooth potential barriers in general.

In addition to the integer conduction steps, there is
the remarkable 0.7(2e2/h) conduction anomaly occurring
below the lowest conduction plateau, as was first explored

by Thomas and co-workers [4]. Because of its magnetic
field dependence, the anomalous conductance behavior was
immediately associated with spontaneous spin polarization.
However, in contrast to the relatively straightforward one-
electron physics for the integer steps, the true origin of the 0.7
anomaly is still disputed. There is an ever expanding literature
on the effects of temperature, magnetic field, source–drain
bias, device geometry etc, which is too rich to be summarized
here. We therefore refer to some selected overviews [5–7] and
references within.

Obviously the 0.7 feature results from electron interac-
tions, but their exact role is, as indicated, not agreed on. Nat-
urally there has been a number of different theoretical efforts,
but here we limit our discussion to basically two main devel-
opments namely spontaneous spin-polarization and Kondo-like
behaviour due to a bound state and single spin. In their pioneer-
ing work, Thomas et al [4] did emphasize the importance of
spin splitting, which is a view that has been supported by nu-
merous measurements for a variety of device geometries [5].
Therefore much theoretical work has been devoted to finding
the mechanism behind with the Kohn–Sham (KS) local spin
density approach (LSDA) as one of the essential computational
tools [8]. The purpose of the present paper is to expand along
this line, in particular to explore the pinch-off region in more
detail. The KS approach, which incorporates the effects of
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Figure 1. The left-hand panel shows schematically the transmission barrier for an open fully transmitting QPC. The right-hand panel
illustrates a proposed scenario for the other extreme case, i.e. the region of pinch-off. Due to interactions, one anticipates a potential well
occupied by a localized single spin at the center of the QPC [30–32]. The position of the Fermi energy, EF, is shown by the broken horizontal
line.

exchange and Coulomb interactions, willingly yields the lo-
cal magnetization, as demonstrated for a single QPC and ar-
rays of QPCs, long wires and coupled quantum dots [9–14]1.
The Kohn–Sham approach also predicts that spin polarization
is accompanied by conductance anomalies in the range ∼0.5–
0.7, depending on the device characteristics, as shown in, for
example, [13–20] (see footnote 1). The spin-polarized two-
band model also finds support in the phenomenological model
by Reilly et al [21, 22], which was also recently used to ex-
plain the shot noise in a QPC [23] (see also [16, 24]). The
‘0.7 analogues’ observed by Graham et al [25] due to Zeeman
splitting at high magnetic fields may also be analyzed within
the spin-relaxed Kohn–Sham formalism [26]. Exchange and
correlation-driven spin polarization have also been shown to be
of crucial importance for understanding magnetoconductance
in wires [27].

The Kohn–Sham spin density formalism evidently
predicts that local magnetization may occur spontaneously
because of exchange and electron correlation effects. There
is, however, a fundamental problem inherent in this approach,
because it is in principle a zero-temperature theory. For this
reason, it cannot reliably catch, for example, the anomalous
temperature behavior [4, 28] and zero-bias anomaly [29]
normally associated with the 0.7 conductance structure. To
deal with these features, models have been introduced in
which one assumes that there is a singly occupied bound
state within the QPC itself and, because of this, the
conductance is [28, 30, 31] thermally activated in a Kondo-
like fashion [28, 30] and so on. The proposed appearance
of a magnetic impurity at low electron densities is illustrated
schematically in figure 1 (right-hand panel). This physical
picture is also assumed by Yoon et al [32] to explain recent
experiments for two QPCs in parallel and a certain resonant
peak observed near pinch-off as one QPC is kept at a constant
gate voltage while the voltage for other one is swept.

The Kondo-like model is successful in the sense that it
accounts for thermal and magnetic behavior, finite voltage bias,
etc. It appears, however, that there is also a fundamental
problem with this model. Modeling with common realistic
device parameters shows that bound states like the one in the
right-hand panel of figure 1 do not exist within the QPCs. For

1 For a discussion of the Bloch instability in narrow infinite rods and the
role of electron correlation within different RPA-type approaches, see, for
example, [7].

this reason, one may question if the magnetic impurity model is
generally valid (see also the comments in [33] on the existence
of bound states).

In [13] it was noticed that local magnetization in a QPC
may be reshaped quite drastically as one approaches the region
of pinch-off. The polarized region that extends over the
entire QPC at higher electron concentrations is then split in
two parts that move to the two openings. Here we will
explore this phenomenon in more detail using the Kohn–
Sham spin density technique. Qualitatively, we find the rich
scenario indicated in figure 2. Structures of this kind may be
anticipated from [34–36], which examine the electron states
in the interconnecting region between two few-electron dots.
The nature of the electron states in a QPC near pinch-off is
also investigated in [37] with a similar approach to that here.
However, our emphasis on spin states, extension to re-entering
states, and linear combinations of many-particle states into
pure spin states, as in figure 3, etc is different.

Summing up, we find that questions about the nature of
electron states and the possible formation of the magnetized
state within QPCs remain most important for a proper
understanding of QPC physics. In this paper we thus
discuss the possibility of qualitatively different polarized states
in QPCs and their dependence on the gate voltage. The
model for numerical simulations and the Kohn–Sham spin
density formalism are described in section 2. Results of the
computations are presented in section 3, with an emphasis on
the dependence of spin polarization on the length and width of
a constriction as well as the gate voltage. Section 4 contains a
summary and concluding remarks.

2. A model device

Our basic model device is the gated modulation-doped
GaAs/AlGaAs heterostructure shown schematically in figure 4.
Through appropriate combinations of materials, patterned
gates, doping and applied gate voltages, the two-dimensional
(2D) electron gas trapped at the AlGaAs/GaAs interface may
be shaped and monitored in arbitrary ways by means of
lithography and applied voltages. In the present case of a
quantum point contact—the narrow channel connecting the
two wide 2D reservoirs in figure 4—the electron density may
be changed by an applied gate voltage, Vsg. For sufficiently
strong negative voltages, the number of electrons becomes very
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Figure 2. Progression of spin polarization (local magnetization) with
decreasing conductance (gate voltage) towards pinch-off. Panel
(a) illustrates a fully transmitting ballistic channel with
G = (2e2/h). In this case there is no local magnetization within the
QPC. As the conductance is lowered below the first plateau,
spontaneous polarization driven by interactions sets in, as in (b). In
this case the magnetization extends over the entire constriction. On a
further decrease in the conductance, the magnetized region splits into
two parts with spins in parallel, as in (c). On a further decrease in the
gate voltage, a transition to a state with opposite spin directions may
take place, as in (d). This may, in turn, give way to a new state with
parallel spins, as in (c), but with increased spatial separation of the
two regions. This kind of switching between spin states may occur
repeatedly, as in (d), as electrons are continuously removed from the
constriction by lowering the gate voltage towards pinch-off and
below. The local pile up of spins is accompanied by charge
accumulation.

low within the channel, which is eventually pinched-off. In this
regime the role of electron interactions is evidently enhanced.

Transverse motions within the channel are quantized. The
separation between associated sub-levels is small for wide
channels. As a consequence, many channels are open and
transmit currents. Therefore the channel is effectively 2D. On
the other hand, in narrow channels only a small number of
transverse modes remain occupied. The system then behaves
as if it is quasi-one-dimensional (quasi-1D). In the quantum
limit, which is in focus here, only the lowest mode is involved.

Figure 3. The antisymmetric state (d) in the previous figure is
obviously degenerate with its mirror counterpart. Together, they may
form an entangled singlet covalent type of state, illustrated
schematically in this graph.

x

yz

0
z

GaAs
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undoped GaAs

wWg

Figure 4. Schematic picture of the split gate device used in our
modeling. The two-dimensional electron gas resides at the interface
between the GaAs substrate and the spacer layer. The electron
density is controlled by applied voltages Vg and Vsg between the gates
(the split gate and the two fingers, respectively) and the substrate.
Right and left ungated regions of lithographic width 400 nm serve as
the source and drain, and the narrow middle section defines the QPC.
Other parameters are: donor density is ρd = 6 × 1017 cm−3, and the
cap, donor and spacer layers are, respectively, 24, 36 and 10 nm
thick, i.e. the same as in our previous studies, e.g. [13].

Below we trace the development of magnetized states in the
interior of the QPC as the gate voltage Vsg is changed. As in
our previous studies [13, 15, 18], the calculations are based on
the Kohn–Sham equation for the 2D gas at the GaAs/AlGaAs
interface,

[
− h̄2

2m∗ ∇2 + V σ
eff(x, y)

]
ψσk (x, y) = Eσ

i ψ
σ
k (x, y). (1)

The effective potential in (1) consists of electrostatic
confinement (Vconf), Hartree (VH) and exchange–correlation
(V σ

xc) terms:

V σ
eff(x, y) = Vconf(x, y)+ VH(x, y)+ V σ

xc(x, y). (2)
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The electrostatic term contains four different contributions,

Vconf(x, y) = −eVg(y)− eVsg(x, y)− eVd − eVs, (3)

where Vg is the potential from an infinite plane, held at
a constant voltage, with a slit of width Wg (400 nm in
our calculations), and Vsg is the potential from the central
narrow split gate that defines the QPC. The rest of the terms
correspond to the contributions from donors (Vd) and surface
states (Vs) (see [13]). For Vg(y), an analytic expression is
derived in [38]. To find Vsg we use numerical integration
over the surface of the split gates. The Hartree term, VH, is
also calculated numerically, including mirror charges from the
ionized donors. For the exchange–correlation potential, Vxc,
we use the parameterization from [39]. Finally, in order to
break the (spin) symmetry of the problem, we add a Zeeman
term associated with a tiny magnetic field. The magnetic term
is eventually switched off before self-consistency is reached
in the numerical iteration process. To ensure that the final self-
consistent solutions are not dependent on how the iterations are
initiated, we have repeated the calculations, starting from weak
random magnetic fields which are different for the two spin
directions. As it turns out, the particular choice of trigger is not
important for our final self-consistent results, which therefore
represent ground-state solutions. More details of the model
may be found, for example, in [13, 15, 18].

For convenience, we consider a periodic array of devices
ordered along the x-axis in figure 4. In the calculations, the
unit cell is then simply the split gate area. We solve the
Kohn–Sham equation (1) self-consistently in the plane of the
GaAs/AlGaAs interface by using periodic boundary conditions
and by discretization on a grid. Specifically, we have studied
QPCs of different lithographic length L (in the range 100–
270 nm) and lithographic width W (in the range 10–80 nm).
At each iterative step we find the eigenenergies, Eσ

k , and the
eigenstates, ϕσk , for spin σ , and then calculate the electron
density according to:

ρσ (x, y) =
∑

Eσ
k �μ

∣∣ϕσk (x, y)
∣∣2
. (4)

This expression corresponds to the ground-state equilibrium,
i.e. there is no current induced by, for example, an applied
source–drain voltage. In each step of the iterations we
update the effective potential (2), whose value is used for the
calculation of a new electron density. The iterative procedure is
finished when consecutive electron densities become identical
within a given tolerance.

The spin polarization of the system is calculated at the
output of the iterative process as

p(x, y) = ρ↑(x, y)− ρ↓(x, y), (5)

i.e. the difference between the densities of ↑-spin and ↓-
spin electrons. The periodic boundary conditions applied to
a system imply the periodicity of the eigenfunctions,

ϕσk (x + T, y) = ϕσk (x, y)eikT , (6)

Figure 5. Local spin polarization in nm−2 ( p(x, y) in equation (5))
within a QPC of lithographic length 270 nm and width 10 nm for
decreasing gate voltage Vsg (decreasing electron density in the QPC).
The curves refer to the central symmetry line of the QPC (y = 0 in
figure 4).

where T is the period in the x-direction (equal to 400 nm in
our calculations) and k is the wavevector,

k = 2πm

MT
, (7)

where m is an integer belonging to the first Brillouin zone,
−M/2 < m � M/2, where M is the number of unit cells
(ten in our calculation). The period T is chosen here to be
large enough so that neighboring QPCs do no interact. The
computations are carried out for 0 K.

3. Results

As mentioned already, our focus is on the quantum limit
with G � 2e2/h and cases with only a few electrons
residing in the channel area, i.e. cases for which electron
interactions are enhanced. The principal results for QPCs with
different lithographic lengths and widths are summarized in
figures 5–11.

The first appearance of local spin polarization/magneti-
zation and its gradual development with decreasing gate
voltages Vsg/electron content are shown in figure 5 for a QPC
with lithographic length L = 270 nm and width W = 10 nm.
Initially, at higher voltages there is no polarization, as outlined
schematically in figure 2(a). However, on lowering Vsg, a
pronounced spin polarization/magnetization extending over the
entire QPC takes place for Vsg = −0.361 V, once more as
anticipated in figure 2(b). On a further decrease in the gate
voltage, the polarized region gradually separates into two well-
defined peaks located at the ends of the channel. At first the
spins are aligned in parallel, as in figure 2(c) (the case Vsg =
−0.368 V). At Vsg = −0.368 85 V there is an onset towards
an antisymmetric arrangement of spins. With a further small
decrease in the gate voltage to Vsg = −0.3689 V the spins
at the two ends arrange themselves in an antisymmetric way,
as anticipated in figure 2(d). The net polarization obviously
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Figure 6. Number of up- and down-spin electrons versus gate
voltage Vsg for a QPC with lithographic length 270 nm and width
10 nm. (◦ and �	 refer to up spins and down spins, respectively.)
Polarization vanishes when the channel becomes fully open at
Vsg ∼ −0.35 V. The number of electrons is obtained by integrating
ρσ (x, y) over the QPC, as defined by lithography.
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Figure 7. QPC potentials in eV for up- and down-spin electrons for
a QPC with lithographic length 270 nm and width 10 nm at a gate
voltage Vsg = −0.3689 V. The full drawn and dashed curves refer to
spin-down and spin-up electrons, respectively. The curves refer to the
middle of the QPC (y = 0 in figure 4). Here, EF is set equal to zero.

vanishes in this case. At first sight, one may expect that
this kind of spin arrangement and polarization inside the QPC
would remain like this all the way towards pinch-off. However,
a more detailed analysis of the pinch-off regime reveals another
scenario. At Vsg � −0.37 V the polarization starts to grow,
and new pronounced peaks with parallel polarization occur on
both sides of the constriction, as shown for Vsg = −0.371 V in
figure 2(d). The antisymmetric state re-enters briefly at Vsg �
−0.375 V, but gives way to the spin parallel configuration on
a further decrease in Vsg, as shown for Vsg = −0.38 V. In
summary, the scenario outlined in figure 2 is confirmed by
our simulations. The ‘voltage windows’ for the antisymmetric
states are, however, quite narrow.
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Figure 8. Densities in nm−2 for up- and down-spin electrons within a
QPC with lithographic length 270 nm and width 10 nm at a gate
voltage Vsg = −0.3689 V. (◦ and �	 refer to up spins and down spins,
respectively.)
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Figure 9. QPC potentials in eV for up- and down-spin electrons for
a QPC of length 270 nm and width 10 nm at a gate voltage
Vsg = −0.361 V (full and dashed curves, respectively). The two
curves refer to the middle of the QPC (y = 0 in figure 4). Here EF is
set equal to zero.

The behavior of the number of up- and down-spin
electrons as a function of Vsg are shown in figure 6 for the
same case as above. The repeated appearance of antisymmetric
configurations with decreasing gate voltage/number of
electrons is clearly seen here. The antisymmetric and
symmetry-breaking nature of these states is also clearly present
in the spatial distributions of the potentials (figure 7) and
electron densities (figure 8) for the two spin directions. For
comparison, figure 9 shows the potentials at the gate voltage
Vsg = −0.361 V, i.e. far from the antiferromagnetic domain.
In this case the potential for spin-up electrons has a shallow
minimum, but there is no sign for the formation of any bound
state in the middle of the QPC, in accordance with previous
findings [15, 18]. This result also holds for all other voltages
referred to here.
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Figure 10. Local spin polarization in nm−2 within a QPC with
lithographic length L = 250 nm and width W = 80 nm.

We have also studied a QPC with the same lithographic
width W as above, but with a shorter length L (200 nm).
In this case the polarization is found to decrease four times
in amplitude, and becomes almost indistinguishable from the
polarization in the reservoirs. This confirms our earlier findings
that only QPCs that are long enough possess appreciable spin-
polarized states [18]. This also tells us that the geometry is
very important for obtaining local magnetization.

The last series of our calculations is for a QPC of
lithographic length L = 250 nm and width W = 80 nm.
The results shown in figure 10 are similar to the above case,
in the sense that the initially extended polarization (the case
Vsg = −0.51 V) splits into two peaks situated at the two
ends of the QPC on lowering the voltage. As above, the
spins are in parallel. That spin alignment then gives way to
antiferromagnetic order (the cases Vsg = −0.518 and −0.52 V
in figure 10). Figure 10 also shows that there is an immediate
return to parallel spin peaks on lowering Vsg slightly (the cases
Vsg = −0.525 and −0.53 V). Figure 11 shows how the number
of up spins and down spins evolve with gate voltage. As in
figure 6, the antiferromagnetic order exists only over a narrow
voltage region. The resolution in gate voltage must therefore
be very high to pin-point the antisymmetric (as in figure 5)
or antiferromagnetic (as shown in figure 10) solutions. Near
pinch-off the polarized regions are spatially well separated.
Consequently, the interaction between them is very weak and
the symmetric and antisymmetric solutions are very close in
energy. In practice, they may even be degenerate [37].

4. Summary and concluding remarks

On the basis of the spin-relaxed Kohn–Sham equations
(LSDA), we have investigated the nature of the electron
states and the breaking of spatial and spin symmetries in a
model split gate GaAs/AlGaAs device with realistic device
parameters. We have focused on phenomena associated
with the quantum limit, in particular on the conduction
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Figure 11. Number of up- (◦) and down-spin (�	) electrons within a
QPC with lithographic length L = 250 nm and width W = 80 nm.
The QPC is fully open (G ∼ 2e2/h) at Vsg ∼ −0.48 V and above.

regime between a fully open channel and pinch-off (G <

2e2/h). Throughout the simulations we have found it
necessary to use a high resolution in gate voltage in order
to uncover more subtle features in the electronic structure.
As a consequence, the results in section 3 show that spin
polarization/local magnetization within QPCs is generally far
more complex than might be anticipated from a number of
earlier investigations, for example [9, 13, 15–19, 21, 30]. For
sufficiently long and electron-rich QPCs there is a variety
of spin-polarized states that emerge as the gate voltage is
swept towards the pinch-off regime. The most pronounced
configuration corresponds to ferromagnetic spin ordering that
extends over the entire constriction. This case is well known
and is discussed in the references just cited. However,
on lowering the electron content, the spatially extended
polarization separates spontaneously into different polarized
regions with either up- or down-spin orientations. These
additional states, which thus occur near pinch-off and combine
into overall antisymmetric (antiferromagnetic) or symmetric
(ferromagnetic) arrangements of spins, peak at the two ends
of the constriction. Depending on the specific geometry
and electron content, there may be a sequence of crossovers
between the two kinds of magnetized states, as there are many
ways that spins may order into different spin multiplets. One
scenario, although not undebated, associates the 0.7 anomaly
with the onset of spin polarization. Thus, if there are more
than one re-entries, as for example in figure 6, we should
expect additional conduction anomalies at lower values than
0.7. As in [16, 18, 19], the conduction anomalies may be
marked by a peak-like structure in conductance, as spins are
rearranged while having different transmission coefficients.
Features like these are, however, subtle and might be hard
to observe experimentally. The voltage regions in which
magnetic reordering occurs are quite narrow and the effects
might be blurred by inhomogeneities and temperature [40].

We now turn to the nature of the electron states. Figures 5
and 10 show how spin polarization may peak at the two
openings of a QPC. Accumulations of this kind might give
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the impression of localization and bound states. However,
we recall that there no bound states are found in the present
modeling. All wavefunctions ψσk (x, y) are extended and
contribute collectively to the local build-up of spin polarization
and charge [15]. In the same way, there is a pile-up of charge
that accompanies these local magnetizations. Consequently, in
the present LSDA picture there is no localization of magnetic
moments and charge that derives from bound states embedded
in a continuum, as speculated in figure 1 (right-hand panel).
In this respect, we do not find support for models based on,
for example, a Kondo-like mechanism [30, 32]. Rather than
having a bound state in the middle of the QPC, we thus find,
as the electron content is lowered, a collective build-up of spin
and charge at the two QPC entries, as in figures 2(c) and (d).

The Kohn–Sham equations in equation (1) incorporate the
effects of exchange and Coulomb interactions via an approx-
imate potential V σ

xc(x, y). Basically, the KS equations refer
to single electron states ψσk (x, y), while the corresponding to-
tal wavefunction is a Slater determinant. Although the KS
equations are conceptually and computationally very conve-
nient, there is price to pay. Obviously, they cannot cope with
multi-configurational situations. This is partly remedied by ar-
tificial symmetry breaking of the solutions ψσk (x, y) as multi-
configurational correlations become important. Typical exam-
ples are the antisymmetric states in figure 5. In this case the
symmetry breaking of spatial symmetry leads to an overall
incorrect symmetry of the total wavefunction. Nevertheless,
the artificial symmetry breaking signals that certain correla-
tions are important and are inherent in a properly symmetry-
adapted total wavefunction and corresponding pair correlation
functions gσ,σ ′(r, r ′). Generally, symmetry may be restored
from the KS solutions by combining equivalent states [10, 36].
For the antisymmetric states in figure 5 we would obviously
think of pair-wise combinations of states, as suggested in fig-
ure 3, to form singlet states. In principle, such states are entan-
gled. Higher-spin states such as triplets etc may, in principle,
be constructed in similar ways. The restoration of proper sym-
metry states is, however, non-trivial, since we are dealing with
a continuum of wavefunctions that contribute to the local pile-
ups of spin and charge. So far, we have focused on the region
close to pinch-off (cases (c) and (d) in figure 2). In the region
(b), the electron content is higher and the ferromagnetic spin
polarization extends over the entire QPC. Obviously, there are
a multitude of possible spin states that become populated at fi-
nite temperatures and/or give rise to spin-wave-like scattering
as a source–drain field is applied. We propose that these fea-
tures, which have been overlooked so far, may be important for
understanding the anomalous temperature dependence of the
0.7 structure.

Finally, we comment on a series of recent experiments
concerning the interaction between two QPCs ([32] and
references within). By sweeping the gate voltage of one QPC
while keeping the voltage of the other one fixed near pinch-off,
a resonant peak in the conductance was observed. This peak
appears just near the pinch-off of the swept QPC and is taken
as evidence for a single spin bound state in the center of a QPC,
as in figure 1. As stressed here, we have not found evidence for
bound states of this kind. Instead, we have argued that there is

a rich structure of spin and charge pile-up at the two ends of a
QPC. Close to pinch-off, one may recognize singlet and triplet
states which might be associated with the resonance observed
in [32].
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